Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 500: 153692, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38042273

RESUMO

Acetaminophen (APAP) overdose causes liver injury and acute liver failure, as well as acute kidney injury, which is not prevented by the clinical antidote N-acetyl-L-cysteine (NAC). The absence of therapeutics targeting APAP-induced nephrotoxicity is due to gaps in understanding the mechanisms of renal injury. APAP metabolism through Cyp2E1 drives cell death in both the liver and kidney. We demonstrate that Cyp2E1 is localized to the proximal tubular cells in mouse and human kidneys. Virtually all the Cyp2E1 in kidney cells is in the endoplasmic reticulum (ER), not in mitochondria. By contrast, hepatic Cyp2E1 is in both the ER and mitochondria of hepatocytes. Consistent with this subcellular localization, a dose of 600 mg/kg APAP in fasted C57BL/6J mice induced the formation of APAP protein adducts predominantly in mitochondria of hepatocytes, but the ER of the proximal tubular cells of the kidney. We found that reactive metabolite formation triggered ER stress-mediated activation of caspase-12 and apoptotic cell death in the kidney. While co-treatment with 4-methylpyrazole (4MP; fomepizole) or the caspase inhibitor Ac-DEVD-CHO prevented APAP-induced cleavage of procaspase-12 and apoptosis in the kidney, treatment with NAC had no effect. These mechanisms are clinically relevant because 4MP but not NAC also significantly attenuated APAP-induced apoptotic cell death in primary human kidney cells. We conclude that reactive metabolite formation by Cyp2E1 in the ER results in sustained ER stress that causes activation of procaspase-12, triggering apoptosis of proximal tubular cells, and that 4MP but not NAC may be an effective antidote against APAP-induced kidney injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Camundongos , Animais , Acetaminofen/toxicidade , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Fomepizol/farmacologia , Fomepizol/uso terapêutico , Antídotos/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Apoptose , Mitocôndrias/metabolismo , Rim/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
2.
J Am Soc Mass Spectrom ; 33(11): 2094-2107, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36223142

RESUMO

Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the US, and hepatotoxicity is initiated by a reactive metabolite which induces characteristic centrilobular necrosis. The only clinically available antidote is N-acetylcysteine, which has limited efficacy, and we have identified 4-methylpyrazole (4MP, Fomepizole) as a strong alternate therapeutic option, protecting against generation and downstream effects of the cytotoxic reactive metabolite in the clinically relevant C57BL/6J mouse model and in humans. However, despite the regionally restricted necrosis after APAP, our earlier studies on APAP metabolites in biofluids or whole tissue homogenate lack the spatial information needed to understand region-specific consequences of reactive metabolite formation after APAP overdose. Thus, to gain insight into the regional variation in APAP metabolism and study the influence of 4MP, we established a desorption electrospray ionization mass spectrometry imaging (DESI-MSI) platform for generation of ion images for APAP and its metabolites under ambient air, without chemical labeling or a prior coating of tissue which reduces chemical interference and perturbation of small molecule tissue localization. The spatial intensity and distribution of both oxidative and nonoxidative APAP metabolites were determined from mouse liver sections after a range of APAP overdoses. Importantly, exclusive differential signal intensities in metabolite abundance were noted in the tissue microenvironment, and 4MP treatment substantially influenced this topographical distribution.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Camundongos , Animais , Fomepizol/farmacologia , Fomepizol/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Camundongos Endogâmicos C57BL , Fígado , Necrose/metabolismo
3.
Arch Toxicol ; 96(2): 453-465, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34978586

RESUMO

Acetaminophen (APAP) overdose can cause hepatotoxicity and even liver failure. N-acetylcysteine (NAC) is still the only FDA-approved antidote against APAP overdose 40 years after its introduction. The standard oral or intravenous dosing regimen of NAC is highly effective for patients with moderate overdoses who present within 8 h of APAP ingestion. However, for late-presenting patients or after ingestion of very large overdoses, the efficacy of NAC is diminished. Thus, additional antidotes with an extended therapeutic window may be needed for these patients. Fomepizole (4-methylpyrazole), a clinically approved antidote against methanol and ethylene glycol poisoning, recently emerged as a promising candidate. In animal studies, fomepizole effectively prevented APAP-induced liver injury by inhibiting Cyp2E1 when treated early, and by inhibiting c-jun N-terminal kinase (JNK) and oxidant stress when treated after the metabolism phase. In addition, fomepizole treatment, unlike NAC, prevented APAP-induced kidney damage and promoted hepatic regeneration in mice. These mechanisms of protection (inhibition of Cyp2E1 and JNK) and an extended efficacy compared to NAC could be verified in primary human hepatocytes. Furthermore, the formation of oxidative metabolites was eliminated in healthy volunteers using the established treatment protocol for fomepizole in toxic alcohol and ethylene glycol poisoning. These mechanistic findings, together with the excellent safety profile after methanol and ethylene glycol poisoning and after an APAP overdose, suggest that fomepizole may be a promising antidote against APAP overdose that could be useful as adjunct treatment to NAC. Clinical trials to support this hypothesis are warranted.


Assuntos
Acetaminofen/envenenamento , Antídotos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Acetilcisteína/farmacologia , Analgésicos não Narcóticos/envenenamento , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Overdose de Drogas , Fomepizol/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Camundongos
4.
Arch Toxicol ; 95(10): 3377-3391, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34420083

RESUMO

N-acetylcysteine (NAC) is the only clinically approved antidote against acetaminophen (APAP) hepatotoxicity. Despite its efficacy in patients treated early after APAP overdose, NAC has been implicated in impairing liver recovery in mice. More recently, 4-methylpyrazole (4MP, Fomepizole) emerged as a potential antidote in the mouse APAP hepatotoxicity model. The objective of this manuscript was to verify the detrimental effect of NAC and its potential mechanism and assess whether 4MP has the same liability. C57BL/6J mice were treated with 300 mg/kg APAP; 9 h after APAP and every 12 h after that, the animals received either 100 mg/kg NAC or 184.5 mg/kg 4MP. At 24 or 48 h after APAP, parameters of liver injury, mitochondrial biogenesis and cell proliferation were evaluated. Delayed NAC treatment had no effect on APAP-induced liver injury at 24 h but reduced the decline of plasma ALT activities and prevented the shrinkage of the areas of necrosis at 48 h. This effect correlated with down-regulation of key activators of mitochondrial biogenesis (AMPK, PGC-1α, Nrf1/2, TFAM) and reduced expression of Tom 20 (mitochondrial mass) and PCNA (cell proliferation). In contrast, 4MP attenuated liver injury at 24 h and promoted recovery at 48 h, which correlated with enhanced mitochondrial biogenesis and hepatocyte proliferation. In human hepatocytes, 4MP demonstrated higher efficacy in preventing cell death compared to NAC when treated at 18 h after APAP. Thus, due to the wider treatment window and lack of detrimental effects on recovery, it appears that at least in preclinical models, 4MP is superior to NAC as an antidote against APAP overdose.


Assuntos
Acetaminofen/envenenamento , Acetilcisteína/farmacologia , Antídotos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fomepizol/farmacologia , Acetilcisteína/administração & dosagem , Animais , Antídotos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Overdose de Drogas/tratamento farmacológico , Fomepizol/administração & dosagem , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
5.
AAPS J ; 23(1): 20, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33415501

RESUMO

Alcohol dehydrogenases (ADHs) are most known for their roles in oxidation and elimination of ethanol. Although less known, ADHs also play a critical role in the metabolism of a number of drugs and metabolites that contain alcohol functional groups, such as abacavir (HIV/AIDS), hydroxyzine (antihistamine), and ethambutol (antituberculosis). ADHs consist of 7 gene family numbers and several genetic polymorphic forms. ADHs are cytosolic enzymes that are most abundantly found in the liver, although also present in other tissues including gastrointestinal tract and adipose. Marked species differences exist for ADHs including genes, proteins, enzymatic activity, and tissue distribution. The active site of ADHs is relatively small and cylindrical in shape. This results in somewhat narrow substrate specificity. Secondary alcohols are generally poor substrates for ADHs. In vitro-in vivo correlations for ADHs have not been established, partly due to insufficient clinical data. Fomepizole (4-methylpyrazole) is a nonspecific ADH inhibitor currently being used as an antidote for the treatment of methanol and ethylene glycol poisoning. Fomepizole also has the potential to treat intoxication of other substances of abuse by inhibiting ADHs to prevent formation of toxic metabolites. ADHs are inducible through farnesoid X receptor (FXR) and other transcription factors. Drug-drug interactions have been observed in the clinic for ADHs between ethanol and therapeutic drugs, and between fomepizole and ADH substrates. Future research in this area will provide additional insights about this class of complex, yet fascinating enzymes.


Assuntos
Álcool Desidrogenase/metabolismo , Fármacos Anti-HIV/farmacocinética , Antituberculosos/farmacocinética , Etanol/metabolismo , Antagonistas dos Receptores Histamínicos H1/farmacocinética , Álcool Desidrogenase/antagonistas & inibidores , Álcool Desidrogenase/genética , Animais , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/química , Antituberculosos/administração & dosagem , Antituberculosos/química , Didesoxinucleosídeos/administração & dosagem , Didesoxinucleosídeos/química , Didesoxinucleosídeos/farmacocinética , Interações Medicamentosas , Etambutol/administração & dosagem , Etambutol/química , Etambutol/farmacocinética , Etanol/química , Fomepizol/farmacologia , Antagonistas dos Receptores Histamínicos H1/administração & dosagem , Antagonistas dos Receptores Histamínicos H1/química , Humanos , Hidroxizina/administração & dosagem , Hidroxizina/química , Hidroxizina/farmacocinética , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Oxirredução/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Especificidade da Espécie , Especificidade por Substrato
6.
Eur Rev Med Pharmacol Sci ; 25(24): 7806-7822, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34982442

RESUMO

OBJECTIVE: Mitoxantrone (MTX)- induced cardiotoxicity is a clinical concern that is limiting its use. The aim of this paper, therefore, was to investigate the subchronic administration of MTX plus nonspecific/specific inhibitors of CYP450/2E1, to assess the extent of oxidative-induced injury by measuring levels of oxidative cardiac and injury biomarkers in mice and to evaluate the effects of CYP2E1 on caspase 3 activity and nuclear factor erythroid 2-related factor-2 (NRF-2). MATERIALS AND METHODS: Mice (n = 32) were divided into four treatment groups of eight: control, MTX, MTX + 4-methlypyrazole (4MP) and MTX + disulfiram (Disf). After 6 weeks of treatments, blood and heart samples were collected. RESULTS: Liquid chromatography-mass spectrometry (LCMS) analysis of MTX-treated plasma samples revealed several metabolites with different retention times. Cardiac antioxidant enzymes and creatine kinase (CK) levels were not significantly different among the groups. However, cardiac troponin and caspase 3 activity were significantly raised, with increased CYP2E1 expressions and reduced NRF-2 expression. Tissue damage was observed in all the treatment groups, including MTX, leading to the conclusion that MTX-induced cardiotoxicity was mediated by CYP2E1 activity, which initiated caspase 3 production, and decreased NRF-2 expression. CONCLUSIONS: Therefore, agents that inhibit CPY2E1 expression might attenuate MTX-induced cardiotoxicity by increasing NRF-2 expression.


Assuntos
Antineoplásicos/toxicidade , Cardiotoxicidade/tratamento farmacológico , Inibidores do Citocromo P-450 CYP2E1/uso terapêutico , Dissulfiram/uso terapêutico , Fomepizol/uso terapêutico , Mitoxantrona/toxicidade , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Cardiotoxicidade/sangue , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Caspase 3/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Inibidores do Citocromo P-450 CYP2E1/farmacologia , Dissulfiram/farmacologia , Feminino , Fomepizol/farmacologia , Masculino , Camundongos Endogâmicos BALB C , Mitoxantrona/sangue , Mitoxantrona/farmacocinética , Miocárdio/metabolismo , Miocárdio/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Troponina I/metabolismo
7.
Alcohol Alcohol ; 55(1): 11-19, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31825074

RESUMO

AIMS: It is still unclear which enzymes contribute to the adaptive enhancement of alcohol metabolism by chronic alcohol consumption (CAC). ADH1 (Class I) has the lowest Km for ethanol and the highest sensitivity for 4-methylpyrazole (4MP) among ADH isozymes, while ADH3 (Class III) has the highest Km and the lowest sensitivity. We investigated how these two major ADHs relate to the adaptive enhancement of alcohol metabolism. METHODS: Male mice with different ADH genotypes (WT, Adh1-/- and Adh3-/-) were subjected to CAC experiment using a 10% ethanol solution for 1 month. Alcohol elimination rate (AER) was measured after ethanol injection at a 4.0 g/kg dose. 4MP-sensitive and -insensitive AERs were measured by the simultaneous administration of 4MP at a dose of 0.5 mmol/kg in order to estimate ADH1 and non-ADH1 pathways. RESULTS: AER was enhanced by CAC in all ADH genotypes, especially more than twofold in Adh1-/- mice, with increasing ADH1 and/or ADH3 liver contents, but not CYP2E1 content. 4MP-sensitive AER was also increased by CAC in WT and Adh3-/- strains, which was greater in Adh3-/- than in WT mice. The sensitive AER was increased even in Adh1-/- mice probably due to the increase in ADH3, which is semi-sensitive for 4MP. 4MP-insensitive AER was also increased in WT and Adh1-/- by CAC, but not in Adh3-/- mice. CONCLUSION: ADH1 contributes to the enhancement of alcohol metabolism by CAC, particularly in the absence of ADH3. ADH3 also contributes to the enhancement as a non-ADH1 pathway, especially in the absence of ADH1.


Assuntos
Álcool Desidrogenase/fisiologia , Eliminação Renal/fisiologia , Álcool Desidrogenase/genética , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Etanol/metabolismo , Fomepizol/farmacologia , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos , Eliminação Renal/efeitos dos fármacos
8.
Physiol Rep ; 6(23): e13929, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30512248

RESUMO

Previous studies indicate women have a higher blood alcohol (i.e., ethanol) and acetaldehyde concentration after consuming an equivalent amount of alcohol, and that women are more susceptible to the long-term negative health effects of alcohol. However, there is a paucity of data pertaining to whether there is a sexual dimorphic response in skeletal muscle to alcohol. Adult male and female Sprague-Dawley rats were used and the primary endpoint was in vivo determined muscle (gastrocnemius) protein synthesis (MPS). The initial study indicated MPS did not differ in female rats during proestrus, estrus, metestrus, or diestrus; hence, subsequent studies used female rats irrespective of estrus cycle phase. There was no difference in MPS between male and female rats under basal fasted conditions, and the time- and dose-responsiveness of both groups to the inhibitory effect of acute alcohol did not differ. The ability of alcohol to suppress MPS was comparable in male and female rats pretreated with alcohol dehydrogenase inhibitor 4-methylpyrazol. Chronic alcohol feeding for 6 weeks decreased MPS in male but not in female rats; however, MPS was reduced in both sexes at 14 weeks. Finally, oral gavage of leucine increased MPS similarly in male and female rats and chronic alcohol feeding for 14 weeks prevented the anabolic effect in both sexes. These data suggest normal fluctuations in ovarian hormones do not significantly alter MPS in female rats, and that there is no sexual dimorphic response to the effects of acute alcohol intoxication on MPS. While chronic alcohol consumption appeared to decrease MPS at an early time point in male compared to female rats, there was no sex difference in the suppressive effect of alcohol at a later time point. Overall, these data do not support the prevailing belief that females are more susceptible than males to alcohol's catabolic effect on MPS.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Álcool Desidrogenase/antagonistas & inibidores , Animais , Inibidores Enzimáticos/farmacologia , Estrogênios/sangue , Feminino , Fomepizol/farmacologia , Leucina/farmacologia , Masculino , Metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
9.
Hum Exp Toxicol ; 37(12): 1310-1322, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29739258

RESUMO

Liver injury due to acetaminophen (APAP) overdose is the major cause of acute liver failure in the United States. While treatment with N-acetylcysteine is the current standard of care for APAP overdose, anecdotal evidence suggests that administration of 4-methylpyrazole (4MP) may be beneficial in the clinic. The objective of the current study was to examine the protective effect of 4MP and its mechanism of action. Male C57BL/6J mice were co-treated with 300 mg/kg of APAP and 50 mg/kg of 4MP. The severe liver injury induced by APAP at 6 h as indicated by elevated plasma alanine aminotransferase activities, centrilobular necrosis, and nuclear DNA fragmentation was almost completely eliminated by 4MP. In addition, 4MP largely prevented APAP-induced activation of c-Jun N-terminal kinase (JNK), mitochondrial translocation of phospho-JNK and Bax, and the release of mitochondrial intermembrane proteins. Importantly, 4MP inhibited the generation of APAP protein adducts and formation of APAP-glutathione (GSH) conjugates and attenuated the depletion of the hepatic GSH content. These findings are relevant to humans because 4MP also prevented APAP-induced cell death in primary human hepatocytes. In conclusion, early treatment with 4MP can completely prevent liver injury after APAP overdose by inhibiting cytochrome P450 and preventing generation of the reactive metabolite.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fomepizol/uso terapêutico , Hepatócitos/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Acetaminofen/farmacocinética , Animais , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fomepizol/farmacologia , Glutationa/metabolismo , Hepatócitos/patologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Substâncias Protetoras/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...